Detection of Environmental Agents Using a Novel Aerosol Sampler Coupled to a Micr

Period of Performance: 09/01/2008 - 08/31/2009

$269K

Phase 1 SBIR

Recipient Firm

Enertechnix, Inc.
23616 SE 225TH ST
Maple Valley, WA 98038
Principal Investigator

Abstract

DESCRIPTION (provided by applicant) The proposed project will develop and demonstrate a personal exposure monitor which combines a novel aerosol concentrator, a micro-particle collector, and a microfluidic sample processing and detection platform customized to perform a broad range of assays, coupled to automated data recording and/or transmitting equipment and a position-monitoring device (such as a GPS unit) to provide time- and space-resolved measurements of a wide range of environmental agents. This exposure monitor will significantly improve the ability to localize exposure events in space and time and will provide a critical tool for use in resolving uncertainties about the relationships between exposure and human health impacts. In the proposed project we will customize our aerodynamic lens aerosol concentrator technology for use in a portable air sampler, we will integrate the aerosol concentrator with a capillary aerosol particle collector, and we will interface this particle collection system to a microfluidics card where biological or chemical assays will be carried out and the results detected. Enertechnix, Inc. will be responsible for adapting its existing aerosol concentration and collection technology and Micronics, Inc. will adapt its commercial microfluidics card technology for use in a portable exposure monitor. The University of Washington will develop specific assays that can be adapted for implementation in the microfluidics environment for detection of target biological and chemical agents. Aerosol handling components will be developed by Enertechnix using engineering and CFD modeling capabilities previously developed for other Government-funded projects. These components will be tested using an existing, fully instrumented aerosol chamber and a variety of standard diagnostic methods for particle and bacterial detection such as epi-fluorescence microscopy, bulk fluorescence, culture, real-time PCR, etc. Microfluidic circuitry will be designed and prototyped by Micronics using methods and tools previously developed for production of similar microfluidic cards employing nucleic acid and immunological assays and electrochemical and other detection methods. Specific assays will be developed by the University of Washington using its extensive expertise and laboratory facilities in the areas of microbiology, chemistry, environmental science (atmospheric pollutant detection and characterization), etc.