High-content Label-free Electro-optic Surface Plasmon Resonance Assay Platform

Period of Performance: 09/01/2012 - 02/28/2013


Phase 1 SBIR

Recipient Firm

Ciencia, Inc.
East Hartford, CT 06108
Principal Investigator


DESCRIPTION (provided by applicant): The objective of this Phase I SBIR proposal is the development of a novel instrumentation platform based on Surface Plasmon Resonance (SPR) that if validated would greatly increase the utility of this label-free technology to researchers utilizing high-content assays in systems biology investigations. The benefits of this platform derive from a change in detection paradigm that permits solid-state measurements of SPR shifts as a function of voltage. By moving away from an angle-scanning or wavelength-scanning approach, the proposed proprietary electro-optic grating-coupled SPR platform (EOSPR) would investigate changes in bound mass at as many as 100,000 regions of interest simultaneously. The sensitivity increase over current instrumentation is expected to improve over current label-free state-of-the-art in that data collection will be significantly more rapid in the proposed systm than in other high-content devices. The inclusion of additional data into the averaged measurement implies a greater signal-to-noise ratio, but further advantages are available to the EOSPR system that would not be viable in other SPR platforms. A signal-chopping scheme that could only be implemented on a system that scans as rapidly as the EOSPR device is expected to reduce the noise of the instrumentation. The combination of better signal and reduced noise is expected to lead to increases in label- free detection sensitivity that could approach that of label-based techniques. In addition, since scans of the SPR curves could be completed much more rapidly than in classic devices, the direct measure of more rapid binding events becomes possible. The steps that will be required to verify if this technology can be turned into a commercial product include: modeling of the proposed chip, fabrication the chip, modifying an existing SPR instrument that was previously designed by Ciencia, and conducting proof-of-concept experiments on the prototype system. The objectives to meet these tasks are outlined within the body of this proposal, and strategic consulting arrangements and subcontracts will be employed to maximize the possibility of success for this potentially high-impact project. PUBLIC HEALTH RELEVANCE: Current trends in biomedical research imply that the future of medicine will rely upon ever-increasing degrees of personalized therapy. As the number of understood disease states and therapeutic options increase, so does the amount of diagnostic information necessary to make an informed decision. The proposed EOSPR technology aims to aid systems biology researchers in elucidating and understanding these complex molecular mechanisms by filling the need for a sensitive, label-free, and high-content assay that is affordable enough for widespread adoption.