Efficient Computational Tool for RF-Induced Thermal Response

Period of Performance: 07/02/2012 - 03/30/2013


Phase 1 SBIR

Recipient Firm

Thermoanalytics, Inc.
23440 Airpark Boulevard Array
Calumet, MI 49913
Principal Investigator


ABSTRACT: The ThermoReg thermal model was developed to solve for tissue temperatures resulting from radio frequency (RF) heating using a voxel-based, heterogeneous tissue description of the human body. Although ThermoReg has been parallelized to run on high-performance computer clusters, the time-dependent nature of a thermal solution (especially for tissue temperatures resulting from high-power, short duration RF exposures) can lead to excessive run times that subsequently limit the extent to which parametric studies can be conducted. We propose a set of tasks that build on the ThermoReg code base to dramatically decrease the run-times associated with RF-induced thermal response studies. The performance of these tasks will result in prototype software and associated work flows that will demonstrate substantial decreases in run-time while maintaining model fidelity. BENEFIT: The product of this SBIR will be a valuable tool for existing DOD activities directed at: 1) establishing health effects and safety standards for exposure to electromagnetic fields; 2) development of non-lethal weapons; and 3) evaluating human thermal comfort and health risks in extreme environments across a population of people. We have successfully marketed the use of human thermal models in a number of areas: Automotive and aircraft passenger thermal comfort and safety models; heating, ventilation, and air conditioning (HVAC) designs for vehicles and buildings; protective clothing design; and optimization of garment designs for thermal safety and comfort. The result of this SBIR will be a substantial reduction in run-times allowing potential customers to examine larger design spaces in the application areas listed above.