Advanced Flame Resistant Resin System for Carbon Fiber Reinforced Composite Shipboard Applications

Period of Performance: 06/27/2011 - 04/27/2012


Phase 1 STTR

Recipient Firm

Technova Corporation
Okemos, MI 48864
Principal Investigator
Firm POC

Research Institution

Florida Institute of Technology
150 West University Boulevard
Melbourne, FL 32901
Institution POC


Shipboard structures can benefit from the relatively high performance-to-weight ratio, fatigue life, durability, processability and multi-functionality of polymer composites (versus metals). The fire, smoke and toxicity (FST) performance and the initial economics of composites, however, cannot match those of metals. Efforts to replace metals with composites in shipboard structures have emphasized the use of brominated vinyl esters as fire-retardant polymers in composites. Despite their relatively low cost and ease of fabrication, such halogenated polymers are toxic and potentially carcinogenic, and their compatibility with carbon fiber is less than desirable. There is thus a need for environmentally friendly and affordable polymers which offer desired FST behavior, processability, structural performance and compatibility with carbon fiber. We propose to meet this challenge by developing a tailored polymer chemistry which embodies synergistic and affordable features of organic-inorganic hybrids with nano-scale inorganic constituents and benzoxazines with phosphorus- or silicon-based chemistry. The proposed Phase I project will: (i) synthesize and screen refined epoxy resins incorporating selected elements of the new molecular structure; (ii) thoroughly characterize selected refined epoxies, and identify the system with a preferred balance of performance, cost and sustainability for use in composite topside structures; and (iii) verify the competitive technical, economic and sustainability merits of the refined epoxy system versus brominated vinyl esters and standard phenolic resins. The follow-up Phase I Option will optimize the refined epoxy chemistry embodying organic-inorganic hybrids and phosphorus-/silicon-containing benzoxazines.