Nanotailored Carbon Fibers via Ultra-Long Carbon Nanotubes: Scale-Up and Post Processing

Period of Performance: 09/02/2008 - 05/02/2009


Phase 1 STTR

Recipient Firm

Nanotechlabs, Inc.
409 W. Maple St.
Yadkinville, NC 27055
Principal Investigator
Firm POC

Research Institution

University of Texas at Dallas
800 West Campbell Road
Richardson, TX 75080
Institution POC


The goal of the proposed work is to refine and scale-up the production of high strength continuous threads prepared from ultra-long carbon nanotubes (CNTs). The NanoTechLabs, Inc. (NTL) team will work to produce fibers spun from NTL s ultra-long CNTs. Significant challenges remain that are primarily related to the development of scalable methods for making high strength, CNT threads for the production of ultra-strong and lightweight composite materials. The most significant ones are: 1) dispersion and functionalization of currently available long CNTs, 2) developing effective and scalable thread manufacturing processes for producing threads which express the desirable properties of the carbon nanotubes 3) developing post-production processes to enhance the mechanical properties of the threads, 4) developing a reliable method for producing ultra-long nanotubes (>5 mm) to increase the fiber interactions within the thread, and 5) scaling up the production of these ultra-long carbon nanotubes. Methods that rely on the strengths of the three partners working on the Phase 1 project will be used to overcome these challenges. BENEFIT: The MWNT yarns are interesting as multifunctional materials. The strength, toughness, reversible energy absorption capability, and resistance to knot-induced failure could be exploited for multifunctional materials applications, as could yarn diameters that are up to fifty times smaller than for a human hair. Replacing metal wires in electronic textiles with these nanotube yarns could provide important new functionalities, like the ability to actuate as an artificial muscle and to store energy as a fiber supercapacitor or battery. The small yarn diameters, like those of microdenier yarns used for soft fabrics, could eliminate the uncomfortable rigidity sometimes found for metal-wire-containing conducting textiles that provide radio or microwave absorption, electrostatic discharge protection, textile heating, or interconnect electronic devices.