A Multiscale Software Tool for Field/Circuit Simulation

Period of Performance: 07/11/2008 - 01/07/2009


Phase 1 STTR

Recipient Firm

Wave Computation Technologies, Inc.
1800 Martin Luther King Jr. Parkway
Durham, NC 27707
Principal Investigator
Firm POC

Research Institution

Duke University
2200 W. Main St, Suite 710
Durham, NC 27705
Institution POC


Wave Computation Technologies, Inc. (WCT) proposes to develop a new multiscale solver for electromagnetic field/circuit co-simulation. This solver combines three efficient electromagnetic field algorithms, (a) the spectral element time-domain (SETD) method for coarse scales, (b) the enlarged cell technique (ECT) for the boundary conformal finite-difference time-domain method [i.e., the FDTD method improved to the second order in the presence of curved conductors] for intermediate scales, and (c) the finite-element time-domain (FETD) method for fine scales; this field solver is coupled with nonlinear circuit solver based on SPICE (d). The field/circuit solver is highly efficient for arbitrary mixed-scale problems. The WCT team has extensive experience with these advanced computational electromagnetics algorithms, and is in an excellent position to develop such a multiscale field/circuit simulation tool. WCT has developed an EM software tool based on the ECT and a sophisticated graphic user interface, and has demonstrated that its speed is at least several times faster than existing commercial software packages. Furthermore, WCT has implemented a preliminary field/circuit solver to simulate direct antenna modulation, an important defense communications application. The proposed multiscale field/circuit solver will further extend the application domain to include large antenna arrays and complete circuitry and other dynamically changing environments.