High Frequency Surface Pressure, Shear Stress and Heat Flux Measurements for High Temperature Applications

Period of Performance: 09/26/2007 - 09/26/2008

$100K

Phase 1 STTR

Recipient Firm

Interdisciplinary Consulting Corp.
5042 NW 57th Terrace
Gainesville, FL 32653
Principal Investigator

Research Institution

University of Florida
339 Weil Hall
Gainsville, FL 32611
Institution POC

Abstract

The goal of the proposed project is to develop a robust, high-bandwidth, micromachined Moiré optical-based shear stress sensor with a remote photo-diode/fiber-optic array optical readout for high-temperature, unsteady high-speed flow measurement applications. The time-accurate, continuous, direct measurement of fluctuating wall shear stress is currently not possible. The realization of this capability not only benefits hypersonic vehicle development but impacts a broad application spectrum that ranges from fundamental scientific research to industrial process control, biomedical applications, etc. The proposed sensor consists of a miniature floating element sensor possessing process producing optical gratings on the backside of a floating element and on the top surface of the support wafer to permit backside optical transduction. This design represents a truly flush-mounted, miniature, direct wall shear-stress sensor that possesses immunity from EMI and transverse element movement due to pressure fluctuations and/or vibrations. The optical transduction of the floating element motion is achieved by imaging the Moiré fringe movement via a 16-channel high-temperature, fiber-optic array bundle. This bundle can be several meters long and is attached to a photo-diode array on the non-sensing end. This allows for the electronics to be remotely located away from the high temperatures of the measurement model and facility.