Probabilistic Micromechanical Fatigue Model for Intermetallics

Period of Performance: 06/08/1999 - 03/08/2000


Phase 1 SBIR

Recipient Firm

Persyst DEV Group of Paul Holland
Brentwood, TN 37027
Principal Investigator

Research Topics


The proposed effort focuses on the need for enhanced analytical modeling approaches to characterize and understand fatigue crack initiation and growth in gas turbine engine intermetallics. It is recognized that the design of components subjected to fatigue cannot be based on average material behavior but that designs must consider -3o or some other appropriate extreme value material properties. Thus, a life prediction capability useful in a design application must address the scatter inherent in material response to fatigue. The proposed effort will address the scatter in fatigue of gamma titanium aluminide by investigating the microstructural variables responsible for the scatter and developing analytical and semi-analytical models to quantitatively relate the variables to the response. The model is general and will consider the entire range of damage accumulation sequences; from crack nucleation of the initially unflawed structure to final fast fracture. However, the model will also allow failure to be defined as any subset of damage accumulation i.e., crack initiation life to a particular crack size or the number of cycles to grow a crack from a particular size to final fracture. The models will allow the structural engineer to systematically and quantitatively assess the influence of the material uncertainties on the overall reliability of the structure.