Multifunctional Erosion Resistant Coatings for Turbine Engine Components

Period of Performance: 11/07/2006 - 10/18/2007

$120K

Phase 1 SBIR

Recipient Firm

Directed Vapor Technologies Internationa
2 Boars Head Ln Array
Charlottesville, VA 22903
Principal Investigator

Abstract

Advanced thermal barrier coating systems are desired for gas turbine engines. These coatings will increase the durability of hot-section engine components to significantly improve the time on-wing , safety and readiness of these engines. In this work, we will use novel coating synthesis techniques that enable the deposition of advanced compositions and microstructures to achieve a comprehensive thermal barrier coating system that provides vastly improved resistance to damage from erosion. A low cost, high throughput processing approach for the application of this TBC system is also envisioned. The proposed Phase I effort will identify erosion protection concepts that are anticipated to meet the performance goals at both current and future engine operating temperatures and demonstrate the feasibility of applying these concepts using our advanced processing techniques. The successful completion of the Phase I work will lead to a follow-on Phase II program focused on down-selecting candidate approaches for optimization and applying the new coating onto real aircraft components. Success in this objective will offer the military a pathway toward production implementation of these advanced coatings and the new deposition processing capabilities required for applying coatings of this type onto engine components.