Lung Research Bioreactor with Aerosolized Agent Delivery to Airways

Period of Performance: 04/22/2017 - 04/19/2018

$225K

Phase 1 SBIR

Recipient Firm

Envirometrix Instruments, LLC
BERKELEY, CA 94705
Principal Investigator

Abstract

Project Summary Development of an advanced research bioreactor for regenerating lung tissue, including complete human size lungs, is proposed. This reactor will be capable of decellularizing a human-size lung and using the resulting scaffold to bioengineer an autologous lung through recellularization. This requires efficient means to deposit cells and biologics on the airway walls while maintaining the gas-liquid interface and the breathing action. Also, it is desirable to operate the reactor in a closed chamber and automate the process, while closely monitoring the critical process parameters. Our proposed approach is to adapt a proprietary spraying catheter technology to the lung bioreactor and leverage the applicant?s expertise in automation and control to develop the advanced bioreactor system. The proposed airway sprayer will be capable of accessing the trachea and bronchi of the lung scaffold and safely deposit liquids containing cells and biologics on the airway walls. Airway sprayer will generate liquid aerosols that will be transported deep in the lungs with the aid of a ventilator, which will maintain the breathing action during and after the agent delivery. The base technology is already proven to gently aerosolize cells and large molecules. In this Phase I SBIR project, we propose to further develop airway sprayer technology and validate it in an existing bioreactor. We propose to optimize the device for the best cell delivery outcomes and incorporate an angulation mechanism to access the bronchi. Further, we plan to include an aspiration channel in the catheter device to sample cell secretions for efficient monitoring and control of the recellularization process. Successful completion of this work would establish the feasibility of the novel airway recellularization technique. In Phase II, this device will be incorporated in a fully automated lung research bioreactor. This advanced bioreactor system will be commercialized and made available to the research community.