Aptamer-based Nanofunctionalized OFET Biosensors

Period of Performance: 02/03/2016 - 05/01/2018


Phase 2 STTR

Recipient Firm

Cornerstone Research Group, Inc.
2750 Indian Ripple Road Array
Dayton, OH 45440
Firm POC
Principal Investigator


ABSTRACT: Researchers are identifying new biomarkers to help monitor, diagnose, and treat growing threats to the human body and enhance human performance. Recent sensor work combining biorecognition elements with field effect transistors (bio-FETs) has been shown sensitive and selective to biomarkers in the picomolar range with continuous detection; however device-to-device performance variability, reliability, and scaled manufacturing remain a challenge. For practical applications, device variability should be less than 10% for a reliable sensor in practical applications. Materials used in fabrication of bio-FET platforms also need to be cost effective and scalable for mass production. CRG proposes a water stable organic FET (OFET) based biosensor. In Phase I CRG demonstrated a base OFET platform from scalable solution processable materials that can achieved less than 10% variability in device performance. This base OFET platform could be functionalized with different materials that allow the conjugation of a variety of biorecognition elements. CRG demonstrated the platform in multiple sensor applications including a biosensor. The base OFET platform also has the potential for compatibility printed electronics manufacturing processes. In Phase II CRG will optimize the platform for a specific biomarker and scale device production to achieve a reliable and reproducible biomarker sensor for practical applications.; BENEFIT: Operational Benefits: (1) Extremely low detection limits (picomolar) (2) Water stable (3) Scalable materials for flexible printed electronics (4) Reliable and low variability device performance (5) Long term stability and continuous detection Commercial Applications: (1) Environmental monitoring (2) Multiplex healthcare diagnostics (3) Point of care diagnostics