An Alternative Concrete Chemistry with Significantly Enhanced Durability, Sustainability, Economy, Safety and Strength

Period of Performance: 03/01/2017 - 02/28/2019

$300K

Phase 2 SBIR

Recipient Firm

Metna Co.
1926 Turner Street Array
Lansing, MI 48906
Firm POC
Principal Investigator

Abstract

Manufacturing of Portland cement, the primary binder in concrete, accounts for ~7% of global CO2 emissions, 4% of energy use, and exhaustion of natural resources. Premature aging of concrete in infrastructure systems is another major concern.  A robust binder chemistry has been developed to overcome these drawbacks.  The original approach to production of this binder, however, is not compatible with concrete construction practices, and imposes initial cost burdens.  Novel manufacturing techniques are under development for cost-effective, energy-efficient and high-throughput processing of predominantly waste raw materials into hydraulic cements which complement the performance, sustainability, safety and life-cycle benefits of geopolymer with the initial cost and constructability advantages of Portland cement.  The Phase I project verified the feasibility of the technology, and received positive feedbacks and support from stakeholders.  This allowed for raising funds to match the requested Phase II & Option support towards further development, scale-up and market transition of the technology.  Construction markets emphasizing sustainability and durability (including sewer and transportation infrastructure) are the focus of market entry efforts.  The safety and high recycled content of the new hydraulic cement, its significantly reduced carbon footprint, and applications towards more effective stabilization/solidification of hazardous wastes are some environmental benefits of the technology.