SBIR Phase II: IC Integration Technologies for Flexible Hybrid Electronics

Period of Performance: 09/01/2016 - 08/31/2018

$748K

Phase 2 SBIR

Recipient Firm

Uniqarta, Inc.
42 Trowbridge St Unit 1
Cambridge, MA 02138
Firm POC, Principal Investigator

Abstract

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is to address one of the primary barriers to the emergence of flexible electronics -the inability to assembly and interconnect thinned integrated circuits (ICs) onto flexible substrates in a reliable, cost-effective, high volume manner. Flexible electronics has been the subject of many industry journals, trade shows, technical conferences and market research reports. All describe a new age of ubiquitous electronics with devices embedded in the structures and items around us. Flexible electronic devices, unlike today's devices that are rigid and boxy, can conform to natural, curved shapes that exist in the real world. However, flexible electronics have yet to have their predicted economic and social impact. A major reason is because the electronics industry has not yet found a reliable, low-cost method for assembling thin, flexible ICs onto flexible circuit boards. Today's 'pick-and-place' assembly technology cannot handle ICs thin enough to be flexible. Until a new method is developed and adopted, the potential of flexible electronics will likely not be realized. This Small Business Innovation Research (SBIR) Phase II project will advance the integrated circuit (IC) aspects of a flexible hybrid electronics technology to a level at which these devices can be produced reliably and in volumes in a production-relevant environment. While most of the components of flexible hybrid electronics technology relating to printed electronics methods have been adequately researched and developed, little has been done on the integration of solid-state semiconductor devices onto highly flexible, organic substrates. Partial results have been reported in the literature, however, no attempt has been made to provide a comprehensive, wafer-to-end product approach suitable for commercial applications. This project will address this gap by focusing on all the steps for IC integration, including the preparation for assembly of ultra-thin, flexible semiconductor dies, their attachment onto a flexible circuit board using laser-enabled assembly technology, and their reliable electrical interconnection. The anticipated end results will be a complete flexible hybrid electronics integration technology developed to a level of pilot production readiness.