Wireless Enhanced Myoelectric Control to Improve Upper Extremity Amputee Ability

Period of Performance: 08/01/2016 - 07/31/2017


Phase 2 SBIR

Recipient Firm

Infinite Biomedical Technologies, LLC
Baltimore, MD 21218
Principal Investigator
Principal Investigator
Principal Investigator


DESCRIPTION (provided by applicant): Wireless Enhanced Myoelectric Control to Improve Upper Extremity Amputee Ability ABSTRACT The overall goal of our research program is to enable upper extremity amputees to be productive and independent. For these individuals, one of the most promising developments in the past decade has been the introduction of fully dexterous terminal devices. However, an effective and intuitive control strategy has remained elusive. Myoelectric control works well for one or two degree-of-freedom devices, but is not effective when dealing with a large number of movement classes (such as when attempting to discriminate amongst hand open, index finger point, fine pinch, and so on). Thus there is a need for a strategy to allow amputees to achieve a very high degree-of-freedom hand control, to the level that they can accomplish complex tasks of daily living and working. We now propose the development and validation of morph2.0, the Myoelectrically-Operated RFID Prosthetic Hand. morph2.0 is based on our pioneering and award-winning concept of augmenting traditional electromyogram (EMG) control methodology with a radio-frequency identification (RFID) tag based strategy. The morph technology significantly enhances the capability of the hand to manipulate objects and tasks in an intuitive way: by detecting object-specific RFID tags, morph empowers amputees by reliably giving them the right grip at the right time. The RFID tags act as inputs for the prosthetic hand, allowing automatic and immediate shifts in modes. Specifically, morph2.0 is designed to: 1) empower the user by providing greater control over the prosthesis, 2) increase reliability of the prosthesis 3) increase the inventory of grips and modes of operation the user can readily access, and 4) carry out numerous daily dexterous functional tasks. In this Fast Track effort, we propose: 1) the creation and verification of morph2.0, 2) the third party verification and validation of morph2.0 and 3) an evaluation of morph2.0 in a long-term clinical study of trans-radial amputees. It is our goal to deploy RFID-augmented prostheses and to demonstrate the augmented EMG based control methodologies as the best individualized solution for each patient. Our ambitious but compelling goal is to enable amputees' independent living and enhance their productivity at work.