High-Throughput Low-Cost Manufacturing of Engineered MRI Contrast Agents

Period of Performance: 08/01/2016 - 07/31/2018

$299K

Phase 2 SBIR

Recipient Firm

Weinberg Medical Physics, LLC
NORTH BETHESDA, MD 20852
Firm POC
Principal Investigator

Abstract

New shape-engineered iron-based microscopic contrast agents (MCAs) for magnetic resonance imaging promise to increase diagnostic accuracy while reducing side effects, and enhance scientists’ ability to track stem cells. Currently, techniques used for making multispectral microscale contrast agent particles are cost prohibitive. In Phase I, an innovative technique (employing template-guided electroplating in a roll-to-roll construct) which combines the low cost of chemical synthesis methods, the high uniformity of template-based methods, and the high throughput of automated manufacturing methods to deliver a process for large-scale, cost-effective manufacturing of the new MCAs was described. In Phase II, the Phase I prototype process will be upgraded to include a section that will metallize PCTE reel stock in order to reduce costs, and another section which will measure the NMR resonance shift properties of the particles in situ in order to achieve high particle uniformity. Low-cost production and development of standard operating procedures that will assist in Phase III migration to contract manufacturing facilities will be demonstrated.