Phase IIB: Portable Device for Telecare Monitoring of Elderly People

Period of Performance: 06/01/2016 - 05/31/2017


Phase 2 STTR

Recipient Firm

BioSensics LLC
Principal Investigator
Principal Investigator
Principal Investigator


? DESCRIPTION (provided by applicant): We propose to further develop, field test, and commercialize a reliable and robust sensor technology that allows the objective assessment of daily physical activity, risk of falling, frailty, and activity organization among older adults in he home and community. This is a Phase IIB STTR application. During Phases I&II BioSensics, LLC, in collaboration with the Interdisciplinary Consortium on Advanced Motion Performance and the Arizona Center on Aging at the University of Arizona, developed and clinically validated sophisticated signal processing algorithms and associated sensor hardware to monitor physical activity and falls in older adults using a single motion sensor (tri-axial accelerometer) worn on the torso or as a pendant. Our Phase I/II work resulted in two commercially available products. PAMSys(tm) is a wearable sensor platform for long-term monitoring of activity related parameters that are of significant importance for objective assessment of physical activity, functioning, frailty, and fall risk of older adults. PAMSys(tm) is primarily a research tool with broad applicatons in pharmaceutical clinical trials and other comparative outcomes clinical research. ActivePERS(tm) is a low-cost medical alert pendant with automatic fall detection, activity monitoring, and non-compliance alerts. ActivePERS(tm) is a consumer product that has been commercialized through 9 on-going partnerships with companies in the telehealth and medical alert markets. With this Phase IIB project we propose to improve our ActivePERS(tm) technology to enable long-term remote monitoring of fall risk and frailty status. An objective method for earl diagnosis, intervention and remote monitoring of the risk of falling/frailty using physical activit telemonitoring and feedback has not yet been developed. Such technology could be used to identify patterns indicative of early changes allowing early diagnosis and intervention of at-risk elders. In addition, it will enable remote and continuous screening of the risk of falling/frailty during daily life, supporting autonomy and quality of life, and limiting the need for clinical intervention. Moreover, the technology can provide an objective tool to evaluate the effects of rehabilitation on motor function, and hence on reductions in the risk of falling/frailty based on te relative efficacy of different interventions. There is a significant commercialization potential fo the proposed technology due to 1) the size of the market, 2) the disruptive nature of our first-to-market technology, and 3) the ongoing national push towards increased efforts towards fall prevention. We will have a market-ready device by the completion of this project with plans for a market launch during Phase III.