Antimony-Based Focal Plane Arrays for Shortwave-Infrared to Visible Applications

Period of Performance: 04/15/2016 - 04/14/2018


Phase 2 SBIR

Recipient Firm

Qmagiq, LLC
22 Cotton Road Array
Nashua, NH 03063
Firm POC, Principal Investigator


We propose to develop antimony-based focal plane arrays (FPAs) for NASA's imaging and spectroscopy applications in the spectral band from visible to shortwave-infrared (SWIR), viz. wavelengths from 0.5 - 2.5 microns. We will leverage recent breakthroughs in the performance of midwave and longwave infrared FPAs based on the InAs/GaSb/AlSb material system in which QmagiQ has played a key part. In these spectral bands, this novel sensor already offers performance comparable to mercury cadmium telluride (MCT) but at a fraction of the cost due to the leveraging of commercial growth and process equipment. Our goal is to extend that benefit into the shortwave infrared. Using the best material currently available and a novel bandgap-engineering design and process, we will fabricate FPAs and measure how the antimony-based sensor compares to state-of-the-art shortwave MCT in terms of quantum efficiency and dark current. In Phase I, we developed the basic building block - a high-performance SWIR photodiode. In Phase II, we will develop FPAs in a variety of formats and deliver them to NASA for evaluation for its astronomy and planetary missions.