STTR Phase I: Optical Modeling and Materials Performance in Laser-Stimulated Phosphors for Next-Generation Solid-State Lighting

Period of Performance: 01/01/2016 - 12/31/2016

$225K

Phase 1 STTR

Recipient Firm

Fluency Lighting Technologies, Inc.
819 Reddick St. c/o Apeel Sciences
Santa Barbara, CA 93103
Firm POC, Principal Investigator

Research Institution

University of California, Santa Barbara
Office of Research
Santa Barbara, CA 93106
Institution POC

Abstract

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to deliver energy and electricity savings in the high-power lighting market, by creating an energy-efficient, high color-quality, and cost effective alternative to conventional light sources using laser technology and materials design. Commercialization of this innovation could lead to the next generation of energy-efficient light sources, surpassing the limitations of current lighting technologies and drastically increasing the availability and uptake of energy-efficient light sources in the high-power market. As lighting is a major source of electricity use in the commercial and industrial markets, this would in turn aid in reducing global energy consumption and help to preserve our environment. The intellectual knowledge gained from these studies will inform future materials research in developing robust materials with optimal properties to advance solid-state lighting, as well as other energy related technologies including solar energy technologies. This Small Business Innovation Research (SBIR) Phase I project aims to advance research in the field of solid-state lighting towards the goal of ultra-efficient and smart lighting by exploring laser-stimulated phosphor emission. In particular, the proposed innovation focuses on energy savings in the high-power lighting market, where high-power light emitting diode (LED) technology does not attain the energy efficiency seen in low-power LED technology, due to LED droop. The use of laser technology can simultaneously overcome the negative effects of droop while also leveraging the directional nature of a laser to create a focused light source that can be better controlled and delivered to the illumination area with less losses and higher overall efficiency. This project will address device designs using optical modeling to maximize lighting performance metrics and will develop materials systems to mitigate the thermal effects introduced when using an intense light source such as a laser or high-power LED, which can damage and degrade materials within the device.