Advanced Algorithms and Controls for Superior Robotic All-Terrain Mobility

Period of Performance: 05/14/2015 - 05/13/2017


Phase 2 STTR

Recipient Firm

ProtoInnovations, LLC
5453 Albemarle Avenue
Pittsburgh, PA 15217
Firm POC
Principal Investigator

Research Institution

Massachusetts Institute of Technology
77 Massachusetts ave
Cambridge, MA 02139
Institution POC


ProtoInnovations, LLC (PI) and the Massachusetts Institute of Technology (MIT) have formed a partnership to research, develop, and experimentally characterize a suite of robotic controls to significantly improve the safety, mean travel speed, and rough-terrain access of wheeled planetary rovers. In meeting this goal we have been developing algorithms for all-terrain adaptive locomotion which include: 1. Advanced traction controls, which intelligently govern individual wheel commands as a function of terrain conditions in order to measurably decrease wheel slip; and, 2. Real-time incipient embedding detection controls, which monitors the rover's inertial signature to rapidly and robustly detect instances of incipient embedding in soft, low bearing-strength soils. The implementation of these controls will not only allow rovers to autonomously detect and avoid hazardous terrain regions, but also to travel with assured safety on terrain that is steeper and rougher than is currently possible. Moreover, these controls will allow rovers to drive with a reduced risk of catastrophic failure, while simultaneously increasing both the quantity and potential quality of science data products. This latter capability is enabled by the fact that rovers will be able to travel for long durations without requiring lengthy human interventions, and will be able to travel to sites of greater scientific interest (and proportionally greater mobility difficulty) than what is possible today.