Coupling Existing Software Paradigms for Thermal Control System Analysis of Re-Entry Vehicles

Period of Performance: 06/17/2015 - 12/17/2015

$125K

Phase 1 SBIR

Recipient Firm

Combustion Research & Flow Technology
6210 Keller's Church Road Array
Pipersville, PA 18947
Firm POC
Principal Investigator

Abstract

The innovation proposed is the unification of existing and operational high fidelity simulation software tools into an integrated framework with which to predict aero-heating, ablation, thermal response, and structural integrity for re-entry vehicles (RV) under a full range of trajectory conditions from rarefied to continuum. Virtually all software components necessary to achieve this goal are available within the CRAFT Tech suite of simulation tools which have a range of modern day capabilities and features. Many of the capabilities have already been directly applied to reentry flows, such as ablation and regression modeling, transition to turbulence modeling, advanced chemistry and ionization modeling, non-local thermodynamic equilibrium modeling, and a hybrid coupled continuum-rarefied simulation framework for steady and unsteady flows. Other features, such as aero/thermo/structural coupling, also exist but have not been directly applied to reentry type flows so the Phase I effort will demonstrate them in both the rarefied and continuum regimes. Our hybrid continuum-rarefied framework presently contains only information exchange from continuum to rarefied regions. For reentry applications, especially for non-traditionally shaped vehicles, this assumption is no longer valid, so a proposed developmental task will implement a rarefied to continuum information exchange within our existing hybrid continuum-rarefied solver framework. Finally, a plan of action for the Phase II effort will be elaborated to define a common Application Program Interface to couple the various existing components, including software packages outside the CRAFT Tech toolset, into a single unified framework.