Design Combined Effects Explosives (CEX) Using Numerical Simulations

Period of Performance: 08/14/2015 - 08/13/2017


Phase 2 SBIR

Recipient Firm

Combustion Research & Flow Technology
6210 Keller's Church Road Array
Pipersville, PA 18947
Firm POC
Principal Investigator


Combustion Research and Flow Technology, Inc. (CRAFT Tech) and the University of Illinois at Urbana-Champaign (UIUC) have teamed up to provide DTRA with an innovative approach to develop new combined effects explosives (CEX) formulations. CEX represent a class of recently-developed aluminized explosives seeking to provide the performance of both (i) high-energy explosives and (ii) high-blast explosives in a single explosive fill. Given the critical role played by fast aluminum (and other metallic additives) reactions in the very early stages of CEX detonation and the strong sensitivity of CEX performance to variations in CEX ingredients, the development of a validated high-fidelity CEX design tool capable of accounting for size effects and finite-rate chemistry effects is proposed. This approach combines advanced modeling capabilities and time-resolved small-scale testing in order to identify and tune the dominant design variables leading to an optimal CEX formulation. By relying on validated first-principles numerical simulations that describe detonation, anaerobic reaction and aerobic reaction, the proposed CEX design tool is capable of providing a level of understanding of the complex detonation event that is not attainable with currently available simplified modeling approaches.