Reactive Structural Materials for Enhanced Blasts

Period of Performance: 01/01/2015 - 12/31/2015

$985K

Phase 2 SBIR

Recipient Firm

Matsys, Inc.
45490 Ruritan Circle Array
Sterling, VA 20164
Principal Investigator

Abstract

MATSYS proposes to develop reactive materials compositions and processing techniques for structural reactive composites for blast enhancement. This effort will combine our unique expertise in instrumented-Hot Isostatic Pressing (HIP) with new approaches in reactive materials design to develop a new generation of cost-efficient and highly reactive materials. The proposed material system will use a blend of elemental or compound powders capable of an energetic (exothermic) chemical reaction. The existence of different powders will allow for tailoring of the mechanical and reactive properties of the material through engineered variations of the volume fraction of each powder to control the type of reaction, the form of energy release and the material break-up mechanism. During this program, we will demonstrate the versatility of the approach by fabricating highly reactive materials that will significantly enhance the blast performance. These materials can be used to replace structurally inert materials with structural reactive materials to enhance weapon effectiveness and reduce payload. Upon successful demonstration, this powder-based process can be easily applied to different powders, and scaled for cost-effective, high-volume production of fully dense structural reactive composites.