Robust moving target handoff in GPS-denied environments

Period of Performance: 01/01/2015 - 12/31/2015


Phase 1 STTR

Recipient Firm

Utopiacompression, Corp.
11150 W. Olympic Blvd. Array
Los Angeles, CA 90064
Principal Investigator

Research Institution

Brigham Young University
A-285 ASB
Provo, UT 84602
Institution POC


ABSTRACT: Over the past decade, there has been a sustained interest in Global Positioning System (GPS) denied navigation technologies for unmanned aircraft systems (UAS). This has been primarily due to the well accepted susceptibility of GPS signals to intentional jamming or unintentional interference and blockage. One of the challenging problems in GPS-denied navigation is handing off moving targets of interest between multiple UAS without the aid of GPS. Two problems must be solved to enable hand-off in denied environments, namely, estimation of relative pose and proper handoff between UAS. In this Phase I effort, we will develop a robust multi-phase handoff approach and examine its feasibility of handing off a moving target between UAS in GPS-denied environments. We will conduct Monte-Carlo simulations to evaluate the handoff algorithms and characterize how the estimation error of relative pose will affect handing-off performance.; BENEFIT: UCs proposed product offering will enable target handoff between multiple UAS in GPS denied environments. Therefore, it will offer a substantial ROI to users of small UAVs as it will maximize the utility of expensive and leveraged hardware investments by increasing actionable ISR derived from existent systems and expanding mission capabilities and operational environments even where GPS is not available. UCs proposed technologies will also enable more automated and efficient operations of multiple UAVs, decreasing operator loads. This will be of substantial use as pilots are currently overworked and in limited supply.