Ultra-Small, Low-Cost Hazardous Gas and Particulate Matter Detector Using Novel Chip-Scale Chemical Sensor Technology

Period of Performance: 01/01/2015 - 12/31/2015


Phase 2 SBIR

Recipient Firm

N5 Sensors, Inc.
9610 Medical Center Dr. #200
Rockville, MD 20850
Firm POC
Principal Investigator


The proposed SBIR Phase II project will demonstrate a wearable, low-power, low-cost detector module capable of detecting 13 toxic and hazardous gases and particulate matter (PM) in air suitable for use by first-responders and fire-inspectors during active knock-down and overhaul phases of fire operation. Standard four-gas detectors are grossly inadequate not only in terms of the limited information they can provide, but also due to severe operational and reliability problems as well as high operational and maintenance costs. We will develop the detector by combining patent-pending chip-scale gas sensor technology with a low-cost PM detector module, resulting in an integrated solution for environmental threat monitoring. This microscale gas sensor technology relies on a nanophotocatalysts surface functionalization technique which allows for the detection of host of gases. Utilizing only a few sensor chips, small detectors capable of simultaneously monitoring multiple gases will be realized. These chip-scale microsensors are produced using highly-scalable microfabrication methods similar to those used in production of electronic integrated circuits, which are ideally-suited for low-cost mass-manufacturing. In addition, N5 will refine the sensor designs, introduce additional on-chip components for reliable field-operation, develop a robust manufacturing process, demonstrate the reliability metrics of these sensors, and develop three complete working prototype detectors. We will conduct field-testing of the completed handheld systems through various collaborations to gain insights into the operational, reliability, and maintenance issues, and explore strategies for seamless integration with the next-generation of incident command response and decision support systems.