Durable High Temperature Coatings For Utility Scale Gas Turbine Hot Gas Path Components

Period of Performance: 01/01/2015 - 12/31/2015


Phase 2 STTR

Recipient Firm

Ues, Inc.
4401 Dayton-Xenia Road Array
Dayton, OH 45432
Firm POC
Principal Investigator

Research Institution

Pennsylvania State University
110 Technology Center Building
University Park, PA 16802
Institution POC


For advanced gas turbines where turbine inlet temperature reaches 2650F and beyond, the current state-of-the-art thermal barrier coating (TBC) systems are not adequate to provide the needed protection for the metallic components of the turbine engine. Thus there is a need to develop new chemistries for TBC systems, consisting of bond coat and top coat, with enhanced durability. We propose to modify the coating chemistry of high temperature top coat material to impart higher toughness needed for high temperature durability. We also propose to develop highly durable bond coat chemistry. The Phase I approach consists of the feasibility demonstration of the developed coating chemistries whereas the phase II approach involves optimization of the bond coat and top coat chemistries in relation to their relevant properties. In the Phase I work, appropriate top and bond coat materials were selected and appropriately processed to render their chemistry suitable for high temperature applications. The processed top and bond coats were characterized to show that they have the desired characteristics that were lacking for application at higher temperature with enhanced durability. In the Phase II work, the top and bond coat chemistries will be further optimized to impart optimal desired characteristics. Also in Phase II, approaches will be developed to manufacture optimal top coat material on a commercial scale. Complete TBC systems with optimal top and bond coat will be manufactured and characterized to demonstrate their relevant characteristics needed for high temperature applications. Commercial Applications and Other Benefits: The TBC systems developed in this program will have application in turbine engines utilized in electric power production, propelling aircraft, pumping fluids etc. Successful completion of the project will enable gas turbine engines to operate at elevated temperatures with higher efficiency (lower cost), lower emission (less environmental pollution) and increased reliability and performance.