Feral Swine Population Control Enabled by An Intelligent Species-Specific Recognition System

Period of Performance: 01/01/2014 - 12/31/2014

$100K

Phase 1 SBIR

Recipient Firm

INFORMATION SYSTEM TECHNOLOGIES INC
5412 HILLDALE CT Array
Fort Collins, CO 80526
Principal Investigator
Firm POC

Abstract

Feral swine (Sus scrofa, or more generally known as "wild pigs") populations in the United States inflict serious and growing ecological and economic impacts to the farming and ranching ecosystems where the population continues to grow and invade new territory (see http://digitalcommons.unl.edu/icwdm_usdanwrc/292/). These invasions ultimately impact the security, quality, and safety of the food supply and water resources coming from these regions. Recent and ongoing research is investigating the design and effectiveness of methods including traps, toxicant delivery systems, and baits. However, these methods predominately lack sufficient ability to prevent unintended actions on cohabitating species. Using proven embedded sensor and signal processing technology, traditional and emerging baiting and bioagent delivery techniques can be augmented to prevent inadvertent treatment to other animals.Scientific studies highlight the consequences of the growing feral swine population and the challenges of effectively controlling additional growth. Feral swine are an invasive species well-known for destroying crops, damaging farmland by rooting, destroying natural resources such as water supplies, and spreading disease to livestock, other wildlife, and humans. In addition to agricultural impacts, evidence demonstrates many negative effects on local ecosystems and indigenous wildlife. Great need exists to have more impacting and game-changing population control systems that alleviate the concerns and challenges triggered by the risks of accidental application to a non-targeted species.To this end, the main goal of this research effort is to develop and test an automatic species-specific multi-sensory recognition system that can activate devices to deliver toxicants, disease vaccines, or contraceptives masked in baits. To maximize target-specific identification and minimize non-target activation (false-alarms) of management devices, the proposed system utilizes both acoustic and visual sensors together with a suite of highly efficient and robust algorithms. In the Phase I effort, ISTI will build upon existing experience to enhance and train algorithms to identify feral swine from in-field measurements in real-time using bioacoustic observations (audio data collection). This effort develops the technological ability to correctly recognize feral swine while eliminating the risk of false alarms despite an unpredictable environment. Robust elimination of false positives differentiates this solution from other methods in that non-invading species are unharmed by population control activity. Phase I research will develop and test: (a) a data feature extraction algorithm which highlights unique spectral and temporal characteristics of feral swine vocalizations, (b) a detector for feral swine species detection which offers a high probability of detection and very low false alarm rate, (c) a second-level feature extraction and classification system to eliminate the incident of false alarms (e.g., other animals gaining access to the bait), and (d) a low-cost DSP sensor board for use to process the sensor data and activate the bait delivery mechanism.In a partnership with the National Wildlife Research Council & #39;s APHIS laboratory, the completed acoustic detector prototype will be thoroughly evaluated to validate robustness and improved bait delivery accuracy. The field tests are designed to expose the apparatus to realistic settings. Performance metrics that will be used include probability of detection and classification, false alarm rates, and the classifier confusion matrix and receiver operating characteristic curve. Testing will be comprised of simulated environments constructed using computer test benches and real-world acoustic samples collected offline.The outcome of this research directly benefits the agricultural community impacted by feral swine invasions and generally leads to improved security of foods produced in these regions. Effe