Frequency Domain-based Electrical Accumulator Unit (EAU)

Period of Performance: 07/15/2014 - 10/21/2016

$750K

Phase 2 SBIR

Recipient Firm

Ues, Inc.
4401 Dayton-Xenia Road Array
Dayton, OH 45432
Principal Investigator

Abstract

ABSTRACT: Advanced electrical loads, such as 270Vdc flight actuators, on high performance military aircraft are of special interest due to the near instantaneous demand and regenerative transients placed on the power system, including the generation components. Recent research has focused on designing/fabricating electrical accumulator units (EAU) to offload the transient loads from the generator to energy storage devices. Previous work has focused on EAU techniques which strive to off-load as much as 100% of the transients from the generator system. This Phase II effort investigates a special class of EAU where frequency domain (FD) control techniques are used to manage transient power/energy between the generator and the FDEAU energy storage device (Li-ion battery). Phase I simulations have shown that it is possible to design an FDEAU where the high frequency components of the transients are supplied by the FDEAU while the generator system supplies the low frequency components. A scalable FDEAU will be built and tested with emulated battery, generator and loads. Work will also include design of a full scale aircraft FDEAU including packaging concepts. BENEFIT: Military applications of the technology include advanced manned and unmanned aircraft. As commercial aircraft (general aviation to large civil aircraft) adopt direct current electrical power systems, electrical accumulator units with frequency domain control will likely find applications. As the world continues to "electrify" motion control, whether in robotic processing operations or motion control for transportation, EAU concepts will be applied to conserve energy and smooth energy demand.