Novel Near-to-Mid IR Imaging Sensors Without Cooling

Period of Performance: 01/01/2013 - 12/31/2013

$125K

Phase 1 STTR

Recipient Firm

Boston Applied Technologies, Inc.
6F Gill Street
Woburn, MA 01801
Firm POC
Principal Investigator

Research Institution

Kent State University
Office of the Comptroller
Kent, OH 44242
Institution POC

Abstract

Boston Applied Technologies, Inc (BATi), together with Kent State University (KSU), proposes to develop a high sensitivity infrared (IR) imaging sensor without cooling, which covers a broad band from near infrared (NIR) to mid-infrared (mid-IR). It is based on a specific transparent functional material developed at BATi that has excellent pyroelectric effect, over strong absorption at NIR, mid-IR and long-wave infrared (LWIR) wavebands, perfect transmittance in visible wavelength. With this material, the intensity variation of an incident NIR, Mid-IR or/and LWIR radiation from a warm object can be transferred into intensity variation of a visible beam by a smart use of liquid crystal, which can be detected by a commercial CCD or CMOS camera. Of the most important, the collaboration with Dr. Quan Li's group at The Glenn H. Brown Liquid Crystal Institute at KSU, which is renowned for their pioneer research and development on liquid crystal, will further leverage and ensure the success of the proposed program. Compared to existing thermal imaging techniques, this invention will generate an uncooled IR imaging sensor with unprecedented low costs, high resolution, high sensitivity, low mass, and low power consumption, which is very important to NASA's planetary exploration projects and other applications.