SBIR Phase I: Surface Texturing For Inhibiting Bacterial Biofilm Formation (Machining Process And Machine Tool System Development)

Period of Performance: 01/01/2011 - 12/31/2011


Phase 1 SBIR

Recipient Firm

Microlution, Inc.
4038 N Nashville Ave
Chicago, IL 60634
Principal Investigator


This Small Business Innovation Research (SBIR) Phase I project will enable the manufacture of Sharklet patterns on metallic surfaces. A Sharklet pattern is an engineered micro-surface texture that mimics the texture of shark skin and inhibits bacterial biofilm growth without the use of anti-microbial agents. The Sharklet surface texture technology has been successfully produced in soft materials using photolithographic methods but its extension to metals-based applications has been inhibited by the absence of a suitable manufacturing process. This project will demonstrate feasibility of a micro-grooving process. The efficacy of the micro-grooving process will be proved by machining the Sharklet pattern in steel dies, thereby facilitating the transfer of the Sharklet pattern to metal surfaces for testing. The commercial potential of this project is a significant reduction in hospital-borne infections, the 4th leading cause of death in United States. The estimated market size of such patterned metallic surfaces in the healthcare sector alone is $8.6 billion. Additional markets benefiting from this technology include energy, marine (exceeding $450 million/year), and space exploration. In addition, the presence of a micro-grooving process capability at the micron size scale will enable high-performance cooling solutions for defense and electronics industries that are experiencing a strong need for making smaller and more tightly spaced channels in their cooling devices to significantly enhance their thermal performance. Additionally, many micro-machining centers are machining 3D channels with 50-100 micron channel widths for micro-fluidics research. The ability to make channels and grooves below or near 1 micron in width will enable cutting-edge micro-fluidics researchers to explore additional fundamental fluidics phenomena at 3D micro-/nano-scales at a reduced cost footprint, compared to using conventional (2D geometry-limited) and expensive MEMS-based etching processes.