SBIR Phase I:Metamaterial Volumetric Folded Antennas for Wireless Systems

Period of Performance: 01/01/2010 - 12/31/2010

$150K

Phase 1 SBIR

Recipient Firm

BWE
1026 Sean Circle, 6745 HOLLISTER AVENUE
Darien, IL 60561
Principal Investigator

Abstract

This small business innovation research Phase I project explores novel wireless antenna technologies based on metamaterial volumetric folded antennas structures. The approach is to compress, twist, and fragment metal strips or discs in a multi-layer structure to form self-tuned, bandwidth optimized, and miniaturized antennas. The design methodology of engineering the coupled-line common and differential modes simultaneously presents many opportunities for radio-frequency and microwave components in wireless technology. The new approach of reducing dramatically antenna resonant length and stored electric and magnetic energy, at the same time, while increasing many times the radiated power in an area-constrained multi-layer platform is unique and opens up many possibilities of useful integrated antenna structures. The research methodology is to fold metamaterial slow-wave wires. Those folded wires spread out into multiple layers use effectively the antenna volume in integrated circuits and enhance many times the radiation resistance. The proposed ideas combine the theory of metamaterial slow-wave coupled lines, folded integrated antennas, and volumetric wires, aiming for miniaturization as well as the bandwidth and efficiency optimization and offering a competing edge over the existing products in iphone, global position systems, wireless local access network, and global system mobile devices.