STTR Phase I: Increasing the Efficiency of Membrane Filtration for Drinking Water Purification through the Incorporation of Novel Anti-Biofilm Small Molecules

Period of Performance: 01/01/2009 - 12/31/2009


Phase 1 STTR

Recipient Firm

Agile Sciences, Inc.
Raleigh, NC 27606
Principal Investigator

Research Institution

North Carolina State University
Campus Box 7514
Raleigh, NC 27695
Institution POC


This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This Small Business Technology Transfer Phase I Project tests the feasibility of applying Agile Sciences' technology to decreasing or eliminating biofouling on filtration membranes used for drinking water purification. The main obstacle in efficiently applying membrane filtration to provide safe drinking water is the buildup of biofilms on the membrane, or ""biofouling"". Biofouling not only causes a reduction in throughput, but can also result in uneven flow conditions such that spurts of water carrying contaminants may pass through the membrane, thus introducing these contaminants into the drinking water. The research group of Dr. Christian Melander at NC State University has recently identified a series of small organic molecules that can both inhibit and disperse biofilms of bacteria across bacterial order, class, and phylum. Incorporation of these molecules into filtration membranes has the potential to significantly reduce biofilm buildup, thus greatly improving the efficiency and efficacy of the filtration process. Agile Sciences has licensed the technology developed in the Melander Laboratory, and the scope of this Phase I STTR Project is to develop the methodology necessary to incorporate Agile Sciences' anti-biofilm molecules into filtration membranes while retaining their antifouling properties. Although the availability of safe drinking water is a fundamental human need,