SBIR Phase I: Metabolic Engineering for Clostridial Biotechnology

Period of Performance: 01/01/2009 - 12/31/2009

$99.5K

Phase 1 SBIR

Recipient Firm

Elcriton
15 Reads Way, Suite 106
New Castle, DE 19720
Principal Investigator

Abstract

This Small Business Innovation Research Phase I project aims to develop platform clostridia strains suitable for industrial scale alcohol production from renewable feedstocks and also to improve metabolic engineering technologies for all clostridia. Clostridia are strictly anaerobic, endospore forming prokaryotes of major importance to cellulose degradation, human and animal health and physiology, anaerobic degradation of simple and complex carbohydrates. Obstacles for the industrial use of these organisms include the development of genetic and metabolic engineering tools and strategies that could lead to strains suitable for production of chemicals and fuels from renewable feedstocks. This project focuses on developing metabolic engineering strategies and strains of solventogenic clostridia for the production of chemicals and biofuels. Through novel approaches, this project aims to solve three important bioprocessing bottlenecks: 1) product formation characteristics, 2) product yield and selectivity, 3) and suitable characteristics for repeated fed-batch or continuous fermentations. Anticipated outcomes of this project are clostridia strains that overcome the aforementioned bioprocessing bottlenecks and improved metabolic engineering technologies that are applicable to all clostridia. Development of biorefinery and biofuel technologies has been on the scientific and technological agenda of our nation for over 35 years now but never quite with the urgency of the last 2-3 years. Oil