STTR Phase I: Ultra-High-Speed Micro-Milling Machine

Period of Performance: 01/01/2007 - 12/31/2007

$150K

Phase 1 STTR

Recipient Firm

Mohawk Innovative Technology, Inc.
1037 Watervliet-Shaker Rd Array
Albany, NY 12205
Firm POC

Research Institution

Georgia Institute of Technology
225 North Ave NW
Atlanta, GA 30332
Institution POC

Abstract

This Small Business Technology Transfer (STTR) Phase I project is directed towards the design, development, and evaluation of a unique ultra-high-speed precision micro-milling machine with a micro-spindle/motor assembly along with in situ metrology sensors. The proposed micro-milling machine is an integral part of an overall micro-manufacturing system. Micro-manufacturing refers to the creation of high-precision three-dimensional (3D) products using a variety of materials and possessing features with sizes ranging from tens of micrometers to a few millimeters. While micro-scale technologies are well established in the semiconductor and microelectronics fields, the same cannot be said for manufacturing products involving complex 3D geometry and high accuracies in non-silicon materials. At the same time, the trends in industrial and military products that demand miniaturization, design flexibility, reduced energy consumption, and high accuracy continue to accelerate -- especially in the medical, biotechnology, telecommunications, and energy fields. Mohawk Innovative Technologies, in partnership with the Georgia Institute of Technology, will develop a unique ultra-high-speed precision micro-milling machine, which will have the capability of being used both in milling (for machining softer metals) and in grinding (for harder metals and ceramics). The principal advantage of the proposed micro-milling machine, besides the state-of-the-art in situ metrology, is the higher precision obtained through the implementation of the ultra-high-speed spindle that will decrease the cutting forces and thus tool vibrations. In Phase II, the proposed ultra-high-speed precision micro-milling machine will be further evaluated and modified to demonstrate the fabrication of complex parts for a variety of industries including defense, aerospace, healthcare and energy. The proposed desktop system will be designed with considerations of affordability, portability and versatility to assist in the development of new businesses and industries, and high value jobs.