Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation

Period of Performance: 01/01/2008 - 12/31/2008

$100K

Phase 1 SBIR

Recipient Firm

Picometrix LLC
2925 Boardwalk Drive
Ann Arbor, MI 48104
Principal Investigator
Firm POC

Abstract

We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive evaluation (NDE) system which would provide true three dimensional images of aerospace composite structures. Traditional time domain terahertz reflection tomographic imaging captures only a single view of an object, generating images of laminar structure similar to an ultrasound "B-Scan". This reflection tomographic imaging is limited, however, in revealing only the laminar structure which presents a clear specular reflection from each interface. Furthermore, traditional time domain terahertz reflection tomographic imaging has substantial difficulty in determining the layer index of refraction an absorption properties without ambiguity. We propose to overcome these limitations by utilizing true computed axial tomographic reconstruction of the images. This method acquires not one view, but many radial axial views, generating a sinogram which can be used to reconstruct images using a derivative of standard X-Ray CT filtered back-projection. The sinogram can be generated by the transmission absorbance, transmission time of flight, and, in principle, reflection measurements. The reconstructed TD-THz CT images are 3D maps of the absorption coefficients and/or the index of refraction of the subsurface material.