Thermo-Acoustic Convertor for Space Power

Period of Performance: 01/01/2006 - 12/31/2006

$69.7K

Phase 1 SBIR

Recipient Firm

Sunpower, Inc.
182 Mill Street
Athens, OH 45701
Principal Investigator
Firm POC

Abstract

Sunpower will introduce thermoacoustic Stirling heat engine (TASHE) technology into its existing Stirling convertor technology to eliminate the moving mechanical displacer. The displacer function will be performed by a thermal buffer tube and supporting thermoacoustic components containing no moving mechanical parts. Sunpower's linear alternator will be retained, except re-sized to accommodate the power of the TASHE. TASHE technology has evolved independently, spearheaded by efforts at Los Alamos National Laboratory and typically packages components (heat exchangers, thermal buffer tube) in a physically different layout than typical Stirling convertor technology. The innovation here is to recognize the similarity between components and repackage the thermoacoustic components as closely as possible to the proven layout used for Sunpower's engines. In this way it will be possible to make direct comparisons of size, weight and efficiency between thermoacoustic and displacer-type Stirling convertors. The research will help NASA assess the relative benefits of thermoacoustic and displacer-type Stirling convertors for space power applications and may lead to technology uniquely suited to some missions where displacer-type technology is unacceptable for whatever reason. In Phase 1 we will optimize the concentric TASHE design to provide as much electrical output as possible from a single GPHS (nominally 220 W of heat delivered to the convertor). This design will use the same te