Active Distributed Electrode Array Network for Electrical Stimulation Therapy

Period of Performance: 09/01/2011 - 08/31/2012

$494K

Phase 2 SBIR

Recipient Firm

Customkynetics, Inc.
Nicholasville, KY 40340
Principal Investigator

Abstract

DESCRIPTION (provided by applicant): Transcutaneous electrical stimulation applications involving high numbers of stimulated muscles have been an area of growing interest in recent years. customKYnetics has been approached by research groups and stimulation application developers requesting high channel count stimulation devices for use in their spinal cord injury rehabilitation research studies and products. Existing devices do not offer the features and/or number of stimulation channels required for these applications. Such high channel count devices are often cost prohibitive due to the size and complexity of the stimulator and the limited market for any particular configuration. Devices that are available lack the technological capability to coordinate the activity of the electrode pairs in an application-specific manner. Such applications have also lacked clinical acceptance because managing the large number of wires has been burdensome and impractical. We propose Active Distributed Electrode Array (ADEA) technology, which offers two novel features that address these problems: network architecture and end-user programmability. With these features, the ADEA system will be fully configurable (both in hardware and software) by the application developer (i.e., researcher, specialized clinician, or OEM company) to create application-specific stimulation/sensing networks and stimulation regimens. No end-user programming experience will be required. We successfully completed Phase I work, including feasibility demonstration of the node concept. The goals of this Phase II SBIR project will be to develop clinically viable stimulation and sensing nodes, an ADEA stimulator/controller module, and an end-user programming suite, and to demonstrate efficacy of the technology. The target markets for this device will be specialized clinics, research groups, and OEM companies. The target price for the system will be $3000 in volume for an 8-channel configuration (OEM market). PUBLIC HEALTH RELEVANCE: The proposed work may benefit public health through development of a clinically viable electrical stimulation technology for use in myriad rehabilitation applications. Compared to existing devices and techniques, the technology may improve efficacy, availability, ease of use, and reduce cost of the therapeutic interventions requiring high numbers of muscles to be activated using electrical stimulation in a well controlled/coordinated fashion.