Miniature Non-Invasive IOP Measurement Device

Period of Performance: 03/01/2006 - 02/28/2009

$75K

Phase 2 SBIR

Recipient Firm

Luna Innovations, Inc.
301 1st St Suite 200
Roanoke, VA 24011
Principal Investigator

Abstract

Glaucoma is a leading cause of blindness in the United States and accounts for 15% of blindness worldwide. The Vision Research Plan for the National Eye Institute establishes identifying the biological mechanisms responsible for glaucoma as a national priority. Recent research indicates that many forms of glaucoma have a genetic component. Development of a non-invasive, accurate, and reliable method to measure IOP in rodents will greatly facilitate the identification of genes involved in IOP regulation and the susceptibility of the retina and the optic nerve to glaucomatous damage. A non-invasive technique for measuring IOP in mice will enable repeated measurements on a single eye and be more useful for investigating the effect of age, drugs, and other factors on IOP over time. Luna Innovations, along with Dr. Simon John at the Jackson Laboratory, Dr. John Morrison at the Casey Eye Institute, and Dr. Jay McLaren at the Mayo Clinic, is developing a system for non-invasive intraocular pressure (IOP) measurement with contact area feedback in rodents. During the Phase I program, the Luna Innovations team demonstrated the ability of a prototype device to measure IOP and confirm applanated area in testing with rats. The focus of this resubmitted Phase II proposal is to optimize system performance and completely calibrate and validate performance in rodent studies.